您现在的位置是: 首页 > 汽车排行榜 汽车排行榜

汽车悬挂系统结构图详解_汽车悬挂系统结构图详解图

佚名 2024-05-27 人已围观

简介汽车悬挂系统结构图详解_汽车悬挂系统结构图详解图谢谢大家对汽车悬挂系统结构图详解问题集合的提问。作为一个对此领域感兴趣的人,我期待着和大家分享我的见解和解答各个问题,希望能对大家有所帮助。1.史上最全的汽车各系统内部构造解2.卸车轮看究竟奔驰C300旅行版悬挂解析3.汽车悬挂装置是指什么?有更好··4

汽车悬挂系统结构图详解_汽车悬挂系统结构图详解图

       谢谢大家对汽车悬挂系统结构图详解问题集合的提问。作为一个对此领域感兴趣的人,我期待着和大家分享我的见解和解答各个问题,希望能对大家有所帮助。

1.史上最全的汽车各系统内部构造解

2.卸车轮看究竟 奔驰C300旅行版悬挂解析

3.汽车悬挂装置是指什么?有更好··

4.汽车悬挂工作原理-图解

5.凯迪拉克xt5悬挂解析,凯迪拉克xt5的悬挂

汽车悬挂系统结构图详解_汽车悬挂系统结构图详解图

史上最全的汽车各系统内部构造解

       前一篇文章说了,相信你已经了解了汽车发动机结构图。对于我们汽修来说,了解发动机结构当然是不够的。我们还需要了解每个汽车系统的内部结构,找出它们的原理。请见下图各汽车系统内部结构图。

       汽车电器分布图

       汽车燃油系统内部结构示意图

       自动变速器内部结构示意图

       汽车离合器内部结构示意图

       汽车车轮内部结构示意图

       汽车制动系统内部结构示意图

       汽车悬架结构示意图

       汽车底盘结构示意图

       汽车传动轴万向节差速器结构图

       汽车转向系统结构图

卸车轮看究竟 奔驰C300旅行版悬挂解析

1 前言

       在前面一篇10万公里大保养的文章中,很多读者留言关于没有关于底盘检查的具体部分。有兴趣的车友可以看一下上一篇文章。

       由于底盘的构造涉及的专业性比较强,所以在上一篇并没有开展开更多的篇幅来讲。鉴于有这方面需求的车友也比较多,本篇我们具体科普一下底盘悬架的分类和常见的异响震动解决方案。

       2 底盘悬架的常见类型

       汽车是一个非常庞大和复杂的系统工程。简单来说,可以划分为四大部分:动力总成,车身构架,底盘,电器设备等。

       而底盘作为汽车的四大部分之一,主要作用是支承、安装发动机及其各部件、形成汽车的整体造型,并传递动力到车轮,保证车辆的正常行驶。

       底盘结构是由传动系、行驶系、转向系和制动系四部分组成。也可以简单的理解为由底盘悬架,车架,刹车,以及各种连杆组成。其中底盘悬架的主要起到支撑和减震的作用。另外对于动力总成工作时动力的传递,也会涉及到底盘悬架。

       现代汽车底盘采用的悬挂系统,按其结构类型的不同,分为独立悬挂和非独立悬挂。

       简单来说独立悬架各个车轮悬架系统之间是独立的,车轮行驶中受到的冲击由该轮的独立悬架来完成减震和吸能的处理,而非独立悬架单边受到的冲击会反馈到另外一边的悬架和车轮上。

       独立悬挂系统又可分为横臂式、纵臂式、双连杆式,多连杆式、麦弗逊式悬挂等。非独立悬挂,比较常见的有扭力梁悬架和钢板弹簧式悬挂。

       对于市面上的各种车型,采用不同的悬架系统,再加以调教,形成了不同风格的底盘行驶特性。独立悬架也并不一定就比非独立悬架要好,还和厂家的安装角度,调教风格有很大关系。比如雪铁龙历来都有底盘大师的称号,能把普通的扭力梁后悬架调教的比很多采用多连杆独立悬架的车型都要好。

       举这个例子硬吹了一波雪铁龙,其实就是想告诉大家咱们普通老百姓买车的时候,不用太纠结这个东西。给你一个前双叉臂,后多连杆悬架的运动车型,你也不一定跑得过开着买菜板车悬挂的专业车手(扯的有点远了,咱们接着往下科普)。

       3 底盘悬架的组成和工作原理

       悬架是连接车轮和车身(车架)的桥梁,利用各种形式的弹力(弹簧)和能量消耗部件(减震器/阻尼器)来缓冲车轮在行驶过程中受到的冲击,起到保持车内舒适度,支撑和保持车轮与路面的接触的功能。

       1)麦佛孙式独立悬挂

       麦弗逊式悬挂系统的车轮是沿着主销滑动的悬挂系统,具有结构紧凑、集成度高,零部件少,重量轻的特点,也是汽车上普及率最高的悬架系统。

       可以说从几万块的代步车到几十上百万的豪车都有它的身影。市面上超过80%以上的轿车和SUV的前轮都采用这种悬架。粗壮的筒式减震支柱和弹簧,厚实的下摆臂,是构成麦佛逊悬架的标志。

       2)双叉臂(双横臂)独立悬架

       双叉臂(双横臂)式悬挂系统是指拥有两根叉臂(横臂),车轮在汽车横向平面内摆动的独立悬挂系统。

       可以简单理解为麦佛逊悬架的升级版,将单独的下摆臂衍生成双叉臂或者双横臂的结构。

       对于侧向的支撑更加的到位,比如急刹车不容易点头。高速过弯更加的可靠,不过成本也更高,占用车内空间也更大。

       注:双横臂可以简单理解为简化版的双叉臂,将双叉的复杂形状改成两根简单的横臂,往往会搭配侧向拉杆加以辅助。制造成本也比双叉臂要低,更多的应用在后轮上。

       3)多连杆独立悬架

       多连杆式悬挂系统是由3-5根杆件组合起来控制车轮的位置变化的悬挂系统。多用于轿车或者SUV的后轮悬架系统,也是悬架系统里面最复杂的一种。

       车轮受到各个方向的冲击和力量通过多根连杆来化解,可以保证更高的舒适度和更好的稳定性。特点是贵,占用空间大,维修也更加的麻烦。

       传祺GS4的后轮多连杆独立悬架

       4)扭力梁悬架

       通过一根可以产生扭转力矩的扭力梁将两个车轮连接起来的半独立式悬架系统,也就是我们常说的板车悬架

       普遍用于A级和AO级的小车后轮上面,特点是价格便宜,结构简单,占用空间小,皮实耐用。

       经典的板车扭力梁悬架

       5)钢板弹簧式悬架

       采用钢板碟片的方式被用做非独立悬架的弹性元件,由于它兼起导向机构的作用,使得悬架系统大为简化。这种悬架广泛用于货车,面包车的前、后悬架以及某些硬核越野车中,比如奔驰的大G。

       这种悬架结构简单,成本低,工作可靠,承载性好,缺点是舒适度较差。

       6)双连杆独立悬架

       这种悬架可以看做是麦佛逊悬架的一个变种,把下摆臂替换成2根独立的连杆,辅以横向稳定支撑杆组成。由于两根连杆看起来比较细,也俗称筷子悬架。

       比如老款的汉兰达后轮就是采用这种悬架,特点是比多连杆悬架结构简单,成本要低,舒适度好,但是承载能力和抗扭转能力都比不上多连杆。

       4?底盘异响震动的检查和解决方案

       前面科普了底盘悬架的各种类型和构造,为的是在我们实际用车过程中,当底盘发生异响或者震动过大的时候,可以根据所学的知识快速的定位和解决。根据异响和震动发生的部位可以简单分为下面三种。

       (1)动力总成部位

       a)发动机和变速箱机脚

       动力总成是通过发动机和变速箱机脚安装在底盘上的,而机脚里面的橡胶件会随着使用的时间慢慢老化失去减震的作用,所以发动机和变速箱机脚是我们重点排查的项目之一。

       常见故障现象:怠速震动变大,比如方向盘抖动,油门刹车抖动,异响等

       新老机脚对比,可以看到老机脚橡胶已经开裂并部分缺失。

       b)发电机皮带

       发电机皮带会随着使用里程的增加变长和老化,当皮带的长度超过涨紧轮的极限位置后,皮带就会出现松动,在发动机工作过程中就会造成异响和不规则的抖动。所以皮带也是我们重点检查的项目之一。

       常见故障现象:加速或减速时伴随有不规则的异响和抖动,当这个异响和抖动是来自发动机舱的时候,有可能就是皮带松动造成的。

       c)发动机进气部分

       当发动机进气部分出现堵塞或者泄露的时候,在发动机工作过程中就不能很好的保证燃烧室里面的正常燃烧,异响和抖动也就随之而来。

       常见故障现象:加速不顺,油门偏软无力,异响类似跑火车的声音。

       之前朋友保养完了发现加速油门无力,跑起来还有一股哄哄响的声音,最好一检查,是空滤装反了并且没安装到位导致。

       (2)前轮部位

       a)悬架系统

       悬架系统的异响和震动主要有以下几个地方:

       减震阻尼器漏油

       常见故障现象:经过颠簸或起伏路面明显感觉传递到座位的震动变大,并且持续时间长。

       这是由于阻尼器里的油液泄露,不能很好的起到支撑和消除震动的能力。

       下摆臂球头或者衬套损坏

       下摆臂作为悬架里主要的连接部件,在工作中承受的力较大,连接处的球头里大部分都有橡胶件或者油封,时间长了连接处旷量过大,造成异响和损坏。

       常见故障现象:行车中前轮处异响,底盘松散,并伴随有震动加大,下摆臂也是重点的检查项目之一。

       前轮轴承损坏

       前轮轴承是承载车轮和车身重量的关键轴承之一,安装在车轴羊角(也叫转向节)里,当受到外力超出其承受能力或者润滑不良的时候,就很容易损坏,内部旷量变大。

       常见故障现象:速度越快,异响和震动越大,类似嗡嗡声或者啸叫的声音,并伴随有轮毂不规则跳动。另外原地打方向异响也可能是前轮轴承的问题。

       b)转向系统异响

       转向系统的异响往往发生在转向拉杆球头,转向支柱万向节这些地方。相对来说比较容易检查到。

       常见故障现象:原地打方向有滋啦滋啦的异响,排除轮胎与地面的声音外,很有可能就是拉杆球头或者万向节的问题。

       注:方向柱万向节生锈卡滞还可能会导致方向盘回位不正,打方向生涩等故障

       c)刹车系统异响抖动

       当刹车盘和刹车片在经过长时间的磨损后,会出现两者之间的旷量变大,导致刹车时候刹车片不能很好的和刹车盘进行结合,就会发生异响和抖动。这种情况一般发生在前轮,因为大部分的汽车都是前置发动机,重量集中在前轮,而刹车时点头会加重前轮的承载力和刹车力。

       常见故障现象:刹车时有刺耳的异响,往往伴随有方向盘抖动或前轮抖动等情况。

       (3)后轮部位

       前面提到的前轮部分减震支柱,刹车系统,车轮轴承产生的异响,同理在后轮也可能会发生,这里不再一一举例。后轮和前轮不同的地方在于,很多车型后轮采用的是多连杆悬架和扭力梁悬架。主要讲讲这两种。

       比如上图中的多连杆后悬架,异响往往发现在这些连杆的连接部位,球头旷量变大,胶套损坏是常见的故障。

       上图就是由于球头损坏更换了下横杆的后悬架

       而对于扭力梁悬架,异响往往来源于上图的三个部位,弹簧的上下顶胶和减震支柱的连接处。

       5 小结

       底盘的异响和震动是让很多车主头疼的事情,因为不好定位故障,希望学习了底盘悬架的科普知识和异响震动的来源后,可以给你参考。不花冤枉钱,早日解决故障。

       另外在我们平时的行车过程中,遇到坑洼路段和减速带,减低车速,缓慢通过,可以更好的延长底盘悬架的寿命。

       本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

汽车悬挂装置是指什么?有更好··

       奔驰C级 底盘悬挂背景 对于汽车悬架的详细结构,我们通常只在一些车型官方发布的透视图中知道。从车168前段时间发表的一系列关于悬架技术解读的文章中,也可以看出大家对于悬架知识的理解是热情高涨的。这次我们将借试驾的机会,尝试推出一系列悬架拆解分析文章,让大家看到平日里不容易看到的真实悬架结构。

        第四代奔驰c级底盘悬架背景介绍

        第四代奔驰c级轿车采用了奔驰W204平台。在底盘总体布局上,W204延续了前后驱动的经典布局,轴重分布为53:47,在操控稳定性和舒适性之间达到了很好的平衡。

        奔驰 C30 0旅行版前悬架透视奔驰C300旅行版后悬架透视

        悬架结构方面,W204的奔驰c级采用了前三连杆独立悬架,后多连杆独立悬架。其中,三连杆前悬架是介于麦弗逊式和多连杆式之间的一种形式,与多连杆式悬架不同,因为支柱上方没有叉臂。而三连杆结构能够更精确地控制车轮的纵向运动,提高前轮行驶时的稳定性,使转向更加精准,因此在操控性上超越了传统的麦弗逊悬架结构。

        W204奔驰c级轿车的悬架也采用了“Agility Control”电控系统,可根据驾驶员选择的模式和速度自动调节减震器的阻尼系数。当车速较慢,操控平稳时,减震器会自动调整到较柔和的舒适性设置;然而,当车速快且操作激烈时,减震器将提供硬控制设置。

        奔驰C300旅行版悬挂拆解分析

        前悬架拆解:三连杆+打孔通风制动盘

        这款C300旅行试驾车的前轮与我们常见的C级轿车有相似之处,也有不同之处。同样是采用三连杆独立悬架。不同的是,考虑到旅行车较高的行李承载能力,前制动盘采用了更高效的打孔通风盘。

        前悬架的连杆等零件采用铝合金材质,可以提供相对较轻的簧下重量,连杆的另一端连接到坚固的副车架上,使得整个悬架中刚性好、打孔的前通风刹车盘散热性能好,可以提供良好的热衰减性能,虽然只是单活塞卡钳,但仍然提供了出色的制动性能。

        其中,TRW提供的FBC-60浮动卡钳制动器值得一提。它采用混合技术,可以用最小的重量获得最佳的刚度。此外,虽然它只是一个单一的活塞卡钳,但当与直径为322毫米的制动盘匹配时,它仍然提供了足够的制动力..

        后悬架拆解:多连杆+实心制动盘

        后悬架方面,多连杆结构也是奔驰后驱车型中最常见的结构。虽然多连杆结构相对复杂,但提供了更多的定位参数,这也让负责驾驶的后轮在控制跟踪和舒适性上有了很好的保障。

        与前轮刹车相比,后轮有些薄。在这张照片中,我们可以看到后悬架的减震器和弹簧是分开的。此外,作为弹簧和减震器的焦点的下臂是由多个钢制冲压件组成的之字形防侧倾杆,在车辆转弯时可以将压力侧的部分悬挂力分担给另一侧的车轮。同时后悬架的几根连杆也全部采用铝合金材质,另一端还连接了一个实心副车架。

        另外,与前轮不同的是,后轮刹车由德国大陆的Ate提供,也是单活塞浮动卡钳刹车,但只是实心盘,尺寸略小于前轮。不难理解,这是因为在制动时,车辆的重心会向前移动,前轮会承受更多的制动抓地力,所以前轮所需的制动力总会大于后轮,而前轮刹车盘的尺寸通常会大于后轮。 @2019

汽车悬挂工作原理-图解

        悬挂系统就是指由车身与轮胎间的弹簧和避震器组成整个支持系统。悬挂系统应有的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受。外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。 

       悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。

       典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。

       悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。 

       汽车的悬挂系统分为非独立悬挂和独立悬挂两种,非独立悬挂的车轮装在一根整体车轴的两端,当一边车轮跳动时,另一侧车轮也相应跳动,使整个车身振动或倾斜;独立悬挂的车轴分成两段,每只车轮由螺旋弹簧独立安装在车架下面,当一边车轮发生跳动时,另一边车轮不受影响,两边的车轮可以独立运动,提高了汽车的平稳性和舒适性。

       由于现代人对车子乘坐舒适性及操纵安定性的要求愈来愈高,所以非独立悬挂系统已渐渐被淘汰。而独立悬挂系统因其车轮触地性良好、乘坐舒适性及操纵安定性大幅提升、左右两轮可自由运动,轮胎与地面的自由度大,车辆操控性较好等优点目前被汽车厂家普遍采用。常见的独立悬挂系统有多连杆式悬挂系统、麦佛逊式悬挂系统、拖曳臂式悬挂系统等等。 [编辑本段]悬架系统的分类  根据控制形式不同分为被动式悬架、主动式悬架。

       根据汽车导向机构不同可分为独立悬架、非独立悬架。 [编辑本段]非独立悬架  非独立悬架的结构特点是两侧车轮由一根整体式车桥相连,车轮连同车桥一起通过弹性悬架悬挂在车架或车身的下面。非独立悬架具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。 [编辑本段]独立悬架  

       独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车身下面的。其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。不过,独立悬架存在着结构复杂、成本高、维修不便的缺点。现代轿车大都是采用独立式悬架,按其结构形式的不同,独立悬架又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬架等。

        横臂式悬架

       横臂式悬架是指车轮在汽车横向平面内摆动的独立悬架,按横臂数量的多少又分为双横臂式和单横臂式悬架。

       单横臂式具有结构简单,侧倾中心高,有较强的抗侧倾能力的优点。但随着现代汽车速度的提高,侧倾中心过高会引起车轮跳动时轮距变化大,轮胎磨损加剧,而且在急转弯时左右车轮垂直力转移过大,导致后轮外倾增大,减少了后轮侧偏刚度,从而产生高速甩尾的严重工况。单横臂式独立悬架多应用在后悬架上,但由于不能适应高速行驶的要求,目前应用不多。

       双横臂式独立悬架按上下横臂是否等长,又分为等长双横臂式和不等长双横臂式两种悬架。等长双横臂式悬架在车轮上下跳动时,能保持主销倾角不变,但轮距变化大(与单横臂式相类似),造成轮胎磨损严重,现已很少用。对于不等长双横臂式悬架,只要适当选择、优化上下横臂的长度,并通过合理的布置、就可以使轮距及前轮定位参数变化均在可接受的限定范围内,保证汽车具有良好的行驶稳定性。目前不等长双横臂式悬架已广泛应用在轿车的前后悬架上,部分运动型轿车及赛车的后轮也采用这一悬架结构。

         多连杆式悬架

       多连杆式悬架是由(3—5)根杆件组合起来控制车轮的位置变化的悬架。多连杆式能使车轮绕着与汽车纵轴线成二定角度的轴线内摆动,是横臂式和纵臂式的折衷方案,适当地选择摆臂轴线与汽车纵轴线所成的夹角,可不同程度地获得横臂式与纵臂式悬架的优点,能满足不同的使用性能要求。多连杆式悬架的主要优点是:车轮跳动时轮距和前束的变化很小,不管汽车是在驱动、制动状态都可以按司机的意图进行平稳地转向,其不足之处是汽车高速时有轴摆动现象。

        纵臂式悬架

       纵臂式独立悬架是指车轮在汽车纵向平面内摆动的悬架结构,又分为单纵臂式和双纵臂式两种形式。单纵臂式悬架当车轮上下跳动时会使主销后倾角产生较大的变化,因此单纵臂式悬架不用在转向轮上。双纵臂式悬架的两个摆臂一般做成等长的,形成一个平行四杆结构,这样,当车轮上下跳动时主销的后倾角保持不变。双纵臂式悬架多应用在转向轮上。

        烛式悬架

       烛式悬架的结构特点是车轮沿着刚性地固定在车架上的主销轴线上下移动。烛式悬架的优点是:当悬架变形时,主销的定位角不会发生变化,仅是轮距、轴距稍有变化,因此特别有利于汽车的转向操纵稳定和行驶稳定。但烛式悬架有一个大缺点:就是汽车行驶时的侧向力会全部由套在主销套筒的主销承受,致使套筒与主销间的摩擦阻力加大,磨损也较严重。烛式悬架现已应用不多。

        麦弗逊式悬架

       麦弗逊式悬架的车轮也是沿着主销滑动的悬架,但与烛式悬架不完全相同,它的主销是可以摆动的,麦弗逊式悬架是摆臂式与烛式悬架的结合。与双横臂式悬架相比,麦弗逊式悬架的优点是:结构紧凑,车轮跳动时前轮定位参数变化小,有良好的操纵稳定性,加上由于取消了上横臂,给发动机及转向系统的布置带来方便;与烛式悬架相比,它的滑柱受到的侧向力又有了较大的改善。麦弗逊式悬架多应用在中小型轿车的前悬架上,保时捷911、国产奥迪、桑塔纳、夏利、富康等轿车的前悬架均为麦弗逊式独立悬架。虽然麦弗逊式悬架并不是技术含量最高的悬架结构,但它仍是一种经久耐用的独立悬架,具有很强的道路适应能力。 [编辑本段]主动悬架   主动悬架是近十几年发展起来的、由电脑控制的一种新型悬架。它汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。例如装置了主动悬架的法国雪铁龙桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上的5种传感器分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据。电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬架状态。同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬架运动。因此,桑蒂雅轿车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬架状态,以求最好的舒适性能。

       主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。例如德国奔驰2000款Cl型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度。电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小。 [编辑本段]弹性元件分类  (1)钢板弹簧:由多片不等长和不等曲率的钢板叠合而成。安装好后两端自然向上弯曲。钢板弹簧除具有缓冲作用外,还有一定的减振作用,纵向布置时还具有导向传力的作用。非独立悬挂大多采用钢板弹簧做弹性元件,可省去导向装置和减振器,结构简单。 

       (2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。由于没有减振和传力的功能,还必须设有专门的减振器和导向装置。 

       (3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减振作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。

       (4)扭杆弹簧:将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。 [编辑本段]汽车悬挂系统弹簧的工作原理及改装方法  悬挂系统存在的意义有二:隔离路面的不平使行驶更舒适;行经不平路面时保持轮胎与路面接触。而改良悬挂对"飞车党"来说只有一个目的就是改善操控性。

       悬挂系统的弹簧以圈状弹簧最常用,原因是容易制作、性能效率高、价格低。弹簧在物理学上的定义就是储存能量,当我们施一固定的力於弹簧,它会产生变形,当我们移开施力则弹簧会有恢复原状的趋势,但弹簧在回弹时震汤的幅度往往会超过它原来的长度,直到有磨擦阻力的出现才会减缓弹簧回弹后造成的自由振荡,这减缓弹簧自由振荡的工作通常是避震器的任务。 一般的弹簧是所谓的(线性弹簧),也就是弹簧受力时它的压缩变形量是遵循物理学上的(虎克定律):F=KX,其中F为施力,K为弹力系数,X则为变形量。举例来说有一线性弹簧受力40Kg时会造成1cm的压缩,之後每增加40Kg的施力1cm一定会增加的压缩量。事实上悬挂的弹簧还有其他的压力存在,即使弹簧完全伸展时弹簧仍会受到压力以便让弹簧本身固定在车上。 在传统弹簧、吸震筒式的悬挂设计上,弹簧扮演支持车身以及吸收不平路面和其它施力对轮胎所造成的冲击,而这里所谓的其它施力包含了加速、减速、刹车、转弯等所对弹簧造成的施力。更重要的是在震动的消除过程中要保持轮胎与路面的持续接触,维持车子的循迹性。而改善这轮胎与路面的接触是我们改善操控性的首要考虑。 弹簧的最主要功能就是维持车子的舒适性和保持轮胎完全与地面接触,用错了弹簧会造成行车品质和操控性都有负面的影响。试想如果弹簧是完全僵硬的,那悬挂系统也就发挥不了作用。遇到不平的路面时车子跳起,轮胎也会完全离开地面,若这种情况发生在加速、刹车或转弯时,车子将会失去循迹性。如果弹簧很软,则很容意出现(坐底)的情况,也就是将悬挂的行程用尽。假如在过弯时发生坐底情况则可视为弹簧的弹力系数变成无限大(已无压缩的空间),车身会产生立即的重量转移,造成循迹性的丧失。如果这部车有着很长的避震行程,那麽或许可以避免(坐底)的情况发生,但相对的车身也会变得很高,而很高的车身意味着很高的车身重心,车身重心的高低对操控表现有决定性的影响,所以太软的避震器会导致操控上的障碍。假如路面是绝对的平坦,那我们就不需要弹簧和悬挂系统了。如果路面的崎岖度较大那就需要比较软的弹簧才能确保轮胎与路面接触,同时弹簧的行程也必须增加。弹簧的硬度选择是要由路面的崎岖程度来决定,越崎岖要越软的弹簧,但要多软则是个关键的问题,通常这需要经验的累积,也是各车厂及各车队的重要课题。 一般说来软的弹簧可以提供较佳的舒适性以及行经较崎岖的路面时可保持比较好的循迹性。但是在行经一般路面时却会造成悬挂系统较大的上下摆动,影响操控。而在配备有良好空气动力学组件的车,软的弹簧在速度提高时会造成车高的变化,造成低速和高速时不同的操控特性。

        弹簧的改装

       弹簧的改装主要是要改善操控性,也就是要改用较硬的弹簧或是较短的弹簧。弹簧控制了很多有关操控的因素,弹簧的改变会造成很复杂的操控特性改变。以硬度的增加来说,可提高悬挂的滚动抑制能力,减少过弯时车身的滚动。而车高的降低则可同时降低车身的重心,减少过弯时车身重量的转移,提高稳定性。而车高的降低也可兼顾美观的效果。

       渐进式弹簧

       弹簧两个主要的功用:一是作为悬挂系统或底盘与地面的缓冲,也就是维持舒适性,二是使车子在行经不平路面时保持 轮胎的贴地性。要达成这两个相冲突的目标需要有不同的弹力系数。保持轮胎的贴地性对操控有决定性的影响我们需要硬的弹簧设定,来保持贴地性。在遇到越颠簸的路面我们需要越软的弹簧设定。要同时达成这两个目的,使用具有复合弹力系数的(非线性弹簧),也就是一般所谓的渐进式弹簧,式唯一可行的方法。 渐进式弹簧能随着弹簧的压缩而增加弹力系数,在设计和制造上都有相当的困难度。行经颠簸路面时,弹力系数就会增加维持车身稳定。而最初的弹力系数较软则用来提高行经颠簸路面时轮胎贴地性。渐渐变硬的弹簧可避免悬挂或弹簧出现坐底的情况。这能容许使用高度比原来低的弹簧,用以降低车身重心,并且在行经颠簸路面时维持最低而且最短悬挂行程,不致发生坐底的情况。 要达成渐进式弹簧就是要作出弹力系数会随这着受压缩而产生变化的非线性弹簧,因此目前的渐进是弹簧大多为采用不等螺距弹簧或圈径变化弹簧。不等螺距弹簧受压缩时会产生局部线间接触,以使有效圈数发生变化,进而造成弹力系数K的变化。经由弹簧上下圈径的变化则是改变弹力系数的最直接方法。

凯迪拉克xt5悬挂解析,凯迪拉克xt5的悬挂

       悬挂是车架(或承载式车身)与车桥(或车轮)之间的一切传力装置的总称。悬挂一般由弹性元件、减振器和导向机构组成,横向稳定杆也属于悬挂系统的范畴。

       <广告>

       悬挂根据结构可分为非独立悬挂和独立悬挂两基本类型。

       非独立悬挂与整体式车桥配合使用,主要用在商用车(载货汽车)或越野汽车的后悬挂。这种悬挂的左右车轮不相互独立,当一侧车轮因道路不平,相对车架或车身位置变化的同时,另一侧车轮也有同样的变化。

       独立悬挂与断开式车桥配合使用,主要用在轿车上。这种悬挂的左右车轮相互独立,当一侧车轮因道路不平,相对车架或车身位置变化的同时,另一侧车轮不受影响。

       独立悬挂按照结构形式又可分成横臂式、纵臂式和炷式(麦弗逊式),等等很多。因为前、后悬挂的职能和受力状况还是有很大的差别的,所以有必要按照前后轴各自分开来解释。

       前悬挂系统:目前轿车的前悬挂主要有双横臂式和麦佛逊式(又称滑柱摆臂式)两大类。

       A、双横臂式悬挂是最早用于轿车的结构形式,一般采用两个不等长的叉形摆臂上下布置,转向节分别用两个球头销与两个摆臂相连。螺旋弹簧套在筒式减振器外,多安排在下摆臂与车身之间。由于它结构复杂,质量大成本高,故应用较少。双横臂式悬挂由上短下长两根横臂连接车轮与车身,两根横臂都非真正的杆状,而是大体上类似英文字母Y或C,这样的设计既是为了增加强度,提高定位精度,也为减振器和弹簧的安装留出了空间和安装位置。同时,下横臂的长度较长,且与车轮中心大致处于同一水平线上,这样做的目的是为了在车轮跳动导致下横臂摆动时,不致产生太大的摆动角,也就保证了车轮的倾角不会产生太大变化。这种结构比较复杂,但经久耐用,同时减振器的负荷小,寿命长。

       B、麦佛逊式(即滑柱摆臂式)悬挂结构相对比较简单,只有下横臂和减振器-弹簧组两个机构连接车轮与车身,它的优点是结构简单,重量轻,占用空间小,上下行程长等。缺点是由于减振器和弹簧组充当了主销的角色,使它同时也承受了地面作用于车轮上的横向力,因此在上下运动时阻力较大,磨损也就增加了。且当急转弯时,由于车身侧倾,左右两车轮也随之向外侧倾斜,出现不足转向,弹簧越软这种倾向越大。

       后悬挂系统 :轿车后悬挂系统主要有多连杆式和摆臂式两种等。

       A、多连杆悬挂系统:过去的多连杆悬挂由于是在后车轴左右一体化(与中间的差速器刚性连接)的情况下使用的,会有平顺性差等缺点。现在的多连杆悬挂克服了过去多连杆悬挂的很多的不足,得到越来越多的应用(尤其是在中高级轿车上)。不管是成熟的“5连杆”也好,还是最新的“4连杆”也罢,都是为了更好地使车轮能适应各种不同的路况,让车轮的定位不会因路况和受力变化产生太大扰动,因为只有这样才能保证驾驶员的操控意志在车轮上得以充分的体现。另外5连杆悬挂构造简单、重量轻,可以减少悬挂系统占用的空间。个别的豪华轿车会应用全新的4连杆悬挂系统,会有更精确的转向控制。

       B、摆臂式后悬挂是仅车轴中间的差速器固定,左右半轴在差速器与车轮之间设万向节,并以其为中心摆动,车轮与车架之间用Y型下摆臂连接。“Y”的单独一端与车轮刚性连接,另外两个端点与车架连接并形成转动轴。根据这个转动轴是否与车轴平行,摆臂式悬挂又分为全拖动式摆臂和半拖动式摆臂,平行的是全拖动式,不平行的叫半拖动式

凯迪拉克xt5悬挂解析:前麦弗逊+后多连杆式独立悬架中规中矩,而我们试驾的顶配车型配备RTD电子实时阻尼悬架,顾名思义其悬架阻尼软硬会根据路况进行调节,当然也可手动开启运动模式使其变得更为硬朗,其结构原理也同别克旗下车型所使用的CDC悬架非常相似。

悬挂系统是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平稳地行驶。

麦弗逊式悬挂系统的车轮也是沿着主销滑动的悬挂系统,但与烛式悬挂系统不完全相同,它的主销是可以摆动的,麦弗逊式悬挂系统是摆臂式与烛式悬挂系统的结合。与双横臂式悬挂系统相比,麦弗逊式悬挂系统的优点是:结构紧凑,车轮跳动时前轮定位参数变化小,有良好的操纵稳定性,加上由于取消了上横臂,给发动机及转向系统的布置带来方便;与烛式悬挂系统相比,它的滑柱受到的侧向力又有了较大的改善。

       今天的讨论已经涵盖了“汽车悬挂系统结构图详解”的各个方面。我希望您能够从中获得所需的信息,并利用这些知识在将来的学习和生活中取得更好的成果。如果您有任何问题或需要进一步的讨论,请随时告诉我。